
ON THE BETTI NUMBERS OF REAL VARIETIES

J. MILNOR

The object of this note will be to give an upper bound for the sum

of the Betti numbers of a real affine algebraic variety. (Added in

proof. Similar results have been obtained by R. Thom [lO].)

Let F be a variety in the real Cartesian space Rm, defined by poly-

nomial equations

/i(xi, ■ ■ ■ , xm) = 0, ■ • • , fP(xx, ■ ■ ■ , xm) = 0.

The qth Betti number of V will mean the rank of the Cech cohomology

group Hq(V), using coefficients in some fixed field F.

Theorem 2. If each polynomial f, has degree S k, then the sum of the

Betti numbers of V is ^k(2k — l)m-1.

Analogous statements for complex and/or projective varieties will

be given at the end.

I wish to thank W. May for suggesting this problem to me.

Remark A. This is certainly not a best possible estimate. (Compare

Remark B.) In the examples which I know, the sum of the Betti

numbers of V is always 5= km. Consider for example the m polynomials

fi(xx, ■ ■ ■ , xm) = (xi - l)(xi - 2) • • • (xi - k),

where i=l, 2, • ■ • , m. These define a zero-dimensional variety, con-

sisting of precisely km points.

The proofs of Theorem 2 and of Theorem 1 (which will be stated

later) depend on the following.

Lemma 1. Let V~oERm be a zero-dimensional variety defined by poly-

nomial equations fx = 0, ■ • • , fm = 0. Suppose that the gradient vectors

dfx, • • • , dfm are linearly independent at each point of Vo- Then the

number of points in V0 is at most equal to the product (deg fi) (deg f2)

■ ■ ■ (deg/m).

Proof. Approximate fi, ■ ■ • , fm by real polynomials Flt • ■ ■ , Fm

of the same degrees whose coefficients are algebraically independent.

Now consider the variety Vc in the complex Cartesian space C'" de-

fined by the equations Pi = 0, • • • , Fm = 0. It follows from van der

Waerden [9, §41] that the number of points in Vc is equal to

(deg fi) (deg f2) • ■ ■ (deg/m). Since each point of Vo lies close to some

real point of Vc; this proves Lemma 1.
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Next let IF be a compact, nonsingular hypersurface in Rm, defined

by the equation/=0, where/is a polynomial of degree 2k.

Theorem 1. The sum of the Betti numbers of W is ^.2k(/2k — l)m_1.

Similar estimates have been given by Olneinik [5].

The proof follows. Consider the function n: W—>Sm~l which assigns

to each point of W its unit normal vector grad//| grad/|. According

to a theorem of Sard, the set of critical values of n has measure zero

in 5m_1. (See [7] or [6, p. 10].) Hence, after rotating the coordinate

system if necessary, we may assume that the two points (0, • • -,0,+ l)

of Sm~l are not critical values of n. In terms of local coordinates

«ii • • • . «m-i on IF, this means that the matrix (dni/duj)ij<m is non-

singular whenever n=(0, • • • , 0, ±1).

Now note that the "height function" (xi, • • • , xm)—>xm on W has no

degenerate critical points. In fact near each critical point of this func-

tion we can choose local coordinates «i, • • • , wm_i so that

Xi = «i, • • • , um-i = um-i,       xm = h(ux, • • • , um-i),

where h is the height function. Then

«(«I,   •   •   •  , Mm-l)

= ± (dh/dux, ■ ■ ■ , bh/dum-i, -l)/ViZi9h/dUj)2 + 1);

hence

drii/dUj = ± d2h/du{duj

at each critical point. Therefore the matrix (d2h/duiduj) is nonsingu-

lar; as was asserted.

Now applying Morse theory to the height function h: W—>R, it

follows that the sum of the Betti numbers of W is less than or equal to

the number of critical points of h. (See for example Seifert and Threlfall

[8, §§5 and 8].)

The critical points of h can be characterized as the solutions of the

m polynomial equations

df/dxi = 0, • • • , 3//3aw-i = 0,       / = 0.

Note that at each critical point of h the m gradient vectors

d(df/dxi), ■ ■ ■ , d(df/dxm-i), df

are linearly independent.

Proof. If we differentiate the identity

/(mi, • • • , um-x, h(ux, ■ • • , um-i)) = 0
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twice, and then evaluate at a critical point, we obtain

d2f/dXidXj + idf/dxm)id2h/du%^u¡) = 0;

which shows that the matrix (d2//ax¿3xy)i,y<m is nonsin guiar. From

this the linear independence of the m gradient vectors follows easily.

Now Lemma 1 asserts that the number of critical points of h is less

than or equal to the product

(deg df/dxi) ■ ■ ■ (degc>//r3zm-i)(deg/) = (2£ - l)"-»2*.

Therefore the sum of the Betti numbers of W is less than or equal to

this number. This proves Theorem 1.

Remark B. Using a more complicated argument, which applies

Morse theory directly to the function /, one can prove the following

slightly sharper inequality:

rank H*W g (2* - 1)» + 1.

Using this, Theorem 2 can be sharpened to the form

rankP*F è K(2* - l)m + 1).

Proof of Theorem 2. Let rDm denote the disk of radius r in Rm.

For each r we will show that H*iVf~\rDm) has rankgè(2è-l)'"-1.

Given numbers e, S>0 let PJ(e, b) denote the set of points in Rm

for which

f\+ •••+/* + A*i+ •■ - + xl) ̂ 5\

This is a compact set, since it is contained in the disk of radius 8/e.

If rg5/e note that Vf~\rDmEKie, 8). The set of points in Rm for

which the equality

2 2 2 ,       , 2 2

fi+ ■ ■ -+fP + e\x\   =5

holds will be denoted by dKie, 5), and called the boundary of K. This

is an algebraic hypersurf ace of degree 2 k, where k= M ax {deg /i, • • • ,

deg/p} è 1. This hypersurf ace is nonsingular if and only if ô2 is a regu-

lar value of the function fl+ • • ■ +/5+e2|x|2. Hence, keeping e

fixed, it follows from Sard's theorem that this hypersurface is non-

singular for almost all values of 5. We will assume henceforth that e

and ô are chosen so that this is the case.

Applying Theorem 1 to dK we see that H*idK) has rank

^2ß(2& — l)m_1. But the Alexander duality theorem implies that

rank H*iK) = § rank H*idK).
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(See for example [3, p. 279].) Hence

rank H*K Ú k(2k - 1)—*.

Now choose sequences {e¿} and {5,} so that {e¿} decreases mono-

tonely with limit zero; so that {5;/e¿} decreases monotonely with

limit r; and so that each dK(ti, hi) is nonsingular. Then

Kin, 8i) D K(t2, b2) D K(e», 6») D • • •

with intersection YC\rDm. (These inclusion relations become clear

if we put the defining inequality for A(e, 5) in the form

ZfW+ |*[V/«'si,

and note that 5j+i^5¿e¿+i/€¿^5,.) Therefore the Cech cohomology

group H*( V(~\rDm) is equal to the direct limit of the groups H*K(eit 5.).

(Compare Eilenberg and Steenrod [l, p. 261].) Hence

rank H*(V H rDm) ^ lim sup(rank H*K(u, 5<)) Û k(2k - l)—1.

There remains one small but tricky point : the passage to the limit

as r—> oo. One approach is to make use of the theorem that V can be

triangulated. (See for example Lefschetz and Whitehead [2].) It fol-

lows that the Betti numbers of V based on singular homology theory

are the same as those based on Cech cohomology theory. But the

singular homology group H*(V) is equal to the direct limit of the

singular homology groups of the compact subsets1 of V. II PE VC\rDm

C F is any compact sub-polyhedron, then the restriction homomor-

phism H*V-^>H*P has rank ;£ k(2k — l)"1-1; hence the corresponding

homology homomorphism H*P-^>H*V also has rank = &(2& — l)m_1.

Therefore the limit H* V has rank = &(2& — l)m_1; which completes the

proof.

An alternative approach which does not assume triangulability can

be sketched as follows. By an argument similar to that in [4, p. 338]

one constructs an exact sequence

0 -» £'H<-l(V C\ rDm) -+ B"V -> £,H"(V C\ rDm) -* 0,

where £ denotes the inverse limit functor, and £' denotes its first

derived functor. Since each Hq~l(vT\rDm)  is a finite-dimensional

1 In contrast note that the Cech homology group of a space need not be the

direct limit of the Cech homology groups of its compact subsets. A counter-example is

provided by the union of the curve y = sin( l/x)/x and the y-axis.
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vector space, an argument similar to that used by Eilenberg and

Steenrod in [l, p. 226] shows that the £' term is zero. Therefore

rank H*V = rank (£P*(F H rPm)) ^ ¿(2¿ - 1)-"»,

which completes the alternative proof.

As corollaries one obtains similar estimates, presumably rather

crude, for complex or projective varieties.

Corollary 1 (the complex affine case). // ViECm is defined by

polynomial equations of degree ^k, then rank H*V~i^ki2k — l)2m_1.

Corollary 2 (the complex projective case). If V2EPmiC) is

defined by homogeneous polynomial equations of degree ^k, then

rankH*V2^mki2k-l)2m+1.

Corollary 3 (the real projective case). If V3EPmiR) is de-

fined by homogeneous polynomial equations of degree ^ k, then rank H* V3

^mk(2k—l)m. Here the initial factor m in this expression is needed

only in the special case when the coefficient field F has characteristic 2.

In order to prove Corollary 1 it is only necessary to think of Fi as

a real variety in R2m. To prove Corollary 2 note that the same homo-

geneous equations can be used to define an affine variety VI ECm+1.

The intersection V2T\S2m+1 is the total space of a circle bundle over

F2. Using the Gysin sequence of this bundle, one arrives at the given

estimate. Corollary 3 is proved in the same way. In this case Vi i\Sm

is a 2-fold covering of F3; so that the prime 2 plays a special role.

Added in proof. A rather different problem arises when one con-

siders a locus which is defined by polynomial inequalities. In this case

any estimate must depend not only on the degrees of the inequalities

but also upon their number. As an example the p quadratic inequal-

ities

1 1 1
ix - I)2 ^ —, (x - 2)2 ^ —, • • • , (x - p)2 ^ —

10 10 10

on the real line define a locus with p + l components.

Theorem 3. // XERm is defined by polynomial inequalities of the

form

/ifc0,...,/,a0

with total degree d = degfi+ • • • +deg/p, then

rank H*X ^ \{2 + d)(l + d)m~\



280 J. MILNOR

Proof. Again we first replace X by X(~\rDm. This can be done by

simply adjoining the additional inequality

fo = r2- \x\2^ 0.

Given numbers e^ep+1^8>0, let L(e, 8) denote the set of points in

for which

/o + eèO, ••-,/„ + « 10
and

ifo + t)ifi + e) ■•■(/pTf)-JH.

This set is compact. Its boundary is obtained by setting only the

last expression equal to zero.

Given e we may assume that 5 is chosen so that the boundary is

nonsingular. Therefore the proof (if not the exact statement) of

Theorem 1 shows that

rank H*(r3L(e, 8)) ^ (2 + d)(l + d)—»;

and hence that

rank #*/,(«, 8) g, i(2 + d)(l + ¿)—\

Now choose numbers €, tending monotonely to zero and choose

0<5»<(e» — 6i+i)p+1; so that L(ei, 5i)DL(e2, S2)D • • • with intersec-

tion XC\rDm. As in the proof of Theorem 2, it follows that

rank H*X Ú lim sup (rank H*iXr\rDm)) g W + ¿)(1 + d)m~K
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